

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-admin-tools 0.5.2 documentation

Welcome to django-admin-tools’s documentation!

This documentation covers the latest release of django-admin-tools, a
collection of extensions and tools for the
Django [http://www.djangoproject.com] administration interface,
django-admin-tools includes:

	a full featured and customizable dashboard (for the admin index page
and the admin applications index pages),

	a customizable menu bar,

	tools to make admin theming easier.

To get up and running quickly, consult the quick-start guide, which describes all the necessary steps to install
django-admin-tools and configure it for the default setup.
For more detailed information about how to install and how to customize
django-admin-tools, read through the documentation listed below.

Contents:

	Quick start guide
	Installing django-admin-tools

	Basic configuration

	Testing your new shiny admin interface

	Installation guide
	Requirements

	Installing django-admin-tools

	Configuring django-admin-tools
	Basic configuration

	Available settings variables

	Customization of the django-admin-tools modules
	Introduction

	Customizing the navigation menu

	Customizing the dashboards

	Customizing the theme

	Working with multiple admin sites
	Introduction

	Setting up a different dashboard for each admin site instance

	The django-admin-tools menu and menu items API
	The Menu class

	The MenuItem class

	The AppList class

	The ModelList class

	The Bookmarks class

	The django-admin-tools dashboard and dashboard modules API
	The Dashboard class

	The AppIndexDashboard class

	The DashboardModule class

	The Group class

	The LinkList class

	The AppList class

	The ModelList class

	The RecentActions class

	The Feed class

	Integration with third party applications

	Contributing to django-admin-tools

	Testing of django-admin-tools
	Running tests

	Code coverage report

	Where tests live

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Quick start guide

Before installing django-admin-tools, you’ll need to have a copy of
Django [http://www.djangoproject.com] already installed. For the
0.5 release, Django 1.3 or newer is required.

Installing django-admin-tools

django-admin-tools requires Django version 1.3 or superior, optionally,
if you want to display feed modules, you’ll also need the
Universal Feed Parser module [http://www.feedparser.org/].

There are several ways to install django-admin-tools, this is explained
in the installation section.

For the impatient, the easiest method is to install django-admin-tools via
easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall]
or pip [http://pip.openplans.org/].

Using easy_install, type:

easy_install -Z django-admin-tools

Note that the -Z flag is required, to tell easy_install not to
create a zipped package; zipped packages prevent certain features of
Django from working properly.

Using pip, type:

pip install django-admin-tools

Basic configuration

For a more detailed guide on how to configure django-admin-tools, please
consult the configuration section.

Prerequisite

In order to use django-admin-tools you obviously need to have configured
your Django admin site. If you didn’t, please refer to the
relevant django documentation [https://docs.djangoproject.com/en/dev/intro/tutorial02/].

Configuration

First make sure you have the django.core.context_processors.request
template context processor in your TEMPLATE_CONTEXT_PROCESSORS.

Then, add admin_tools and its modules to the INSTALLED_APPS like this:

INSTALLED_APPS = (
 'admin_tools',
 'admin_tools.theming',
 'admin_tools.menu',
 'admin_tools.dashboard',
 'django.contrib.auth',
 'django.contrib.sites',
 'django.contrib.admin'
 # ...other installed applications...
)

Important

it is very important that you put the admin_tools modules before
the django.contrib.admin module, because django-admin-tools
overrides the default Django admin templates, and this will not work
otherwise.

Then, just add django-admin-tools to your urls.py file:

urlpatterns = patterns('',
 url(r'^admin_tools/', include('admin_tools.urls')),
 #...other url patterns...
)

Finally simply run:

python manage.py syncdb

If you have South installed, make sure you run the following commands:

python manage.py migrate admin_tools.dashboard
python manage.py migrate admin_tools.menu

Testing your new shiny admin interface

Congrats! At this point you should have a working installation of
django-admin-tools. Now you can just login to your admin site and see what
changed.

django-admin-tools is fully customizable, but this is out of the scope of
this quickstart. To learn how to customize django-admin-tools modules
please read the customization section.

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Installation guide

Requirements

Before installing django-admin-tools, you’ll need to have a copy of
Django [http://www.djangoproject.com] already installed. For the
0.5 release, Django 1.3 or newer is required.

For further information, consult the Django download page [http://www.djangoproject.com/download/], which offers convenient
packaged downloads and installation instructions.

Note

If you want to display feeds in the admin dashboard, using the
FeedDashboardModule you need to install the
Universal Feed Parser module [http://www.feedparser.org/].

Installing django-admin-tools

There are several ways to install django-admin-tools:

	Automatically, via a package manager.

	Manually, by downloading a copy of the release package and
installing it yourself.

	Manually, by performing a Mercurial checkout of the latest code.

It is also highly recommended that you learn to use virtualenv [http://pypi.python.org/pypi/virtualenv] for development and
deployment of Python software; virtualenv provides isolated Python
environments into which collections of software (e.g., a copy of
Django, and the necessary settings and applications for deploying a
site) can be installed, without conflicting with other installed
software. This makes installation, testing, management and deployment
far simpler than traditional site-wide installation of Python
packages.

Automatic installation via a package manager

Several automatic package-installation tools are available for Python;
the most popular are easy_install [http://peak.telecommunity.com/DevCenter/EasyInstall] and pip [http://pip.openplans.org/]. Either can be used to install
django-admin-tools.

Using easy_install, type:

easy_install -Z django-admin-tools

Note that the -Z flag is required, to tell easy_install not to
create a zipped package; zipped packages prevent certain features of
Django from working properly.

Using pip, type:

pip install django-admin-tools

It is also possible that your operating system distributor provides a
packaged version of django-admin-tools. Consult your operating system’s
package list for details, but be aware that third-party distributions
may be providing older versions of django-admin-tools, and so you
should consult the documentation which comes with your operating
system’s package.

Manual installation from a downloaded package

If you prefer not to use an automated package installer, you can
download a copy of django-admin-tools and install it manually. The
latest release package can be downloaded from django-admin-tools’s
listing on the Python Package Index [http://pypi.python.org/pypi/django-admin-tools/].

Once you’ve downloaded the package, unpack it (on most operating
systems, simply double-click; alternately, type tar zxvf
django-admin-tools-X-Y-Z.tar.gz at a command line on Linux, Mac OS X
or other Unix-like systems). This will create the directory
django-admin-tools-X-Y-Z, which contains the setup.py
installation script. From a command line in that directory, type:

python setup.py install

Note

On some systems you may need to execute this with administrative
privileges (e.g., sudo python setup.py install).

Manual installation from a Mercurial checkout

If you’d like to try out the latest in-development code, you can
obtain it from the django-admin-tools repository, which is hosted at
Bitbucket [http://bitbucket.org/] and uses Mercurial [http://www.selenic.com/mercurial/wiki/] for version control. To
obtain the latest code and documentation, you’ll need to have
Mercurial installed, at which point you can type:

hg clone http://bitbucket.org/izi/django-admin-tools/

This will create a copy of the django-admin-tools Mercurial repository
on your computer; you can then add the django-admin-tools directory
to your Python import path, or use the setup.py script to install
as a package.

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Configuring django-admin-tools

Basic configuration

Once installed, you can add django-admin-tools to any Django-based
project you’re developing.

django-admin-tools is composed of several modules:

	admin_tools.theming: an app that makes it easy to customize the look
and feel of the admin interface;

	admin_tools.menu: a customizable navigation menu that sits on top of
every django administration index page;

	admin_tools.dashboard: a customizable dashboard that replaces the django
administration index page.

Prerequisite

In order to use django-admin-tools you obviously need to have configured
your django admin site, if you didn’t, please refer to the
relevant django documentation [https://docs.djangoproject.com/en/dev/intro/tutorial02/].

Required settings

First make sure you have the django.core.context_processors.request
template context processor in your TEMPLATE_CONTEXT_PROCESSORS.

Then, add the django-admin-tools modules to the INSTALLED_APPS like
this:

INSTALLED_APPS = (
 'admin_tools.theming',
 'admin_tools.menu',
 'admin_tools.dashboard',
 'django.contrib.auth',
 'django.contrib.sites',
 'django.contrib.admin'
 # ...other installed applications...
)

Note

it is very important that you put the admin_tools modules before
the django.contrib.admin module, because django-admin-tools
overrides the default django admin templates, and this will not work
otherwise.

django-admin-tools is modular, so if you want to disable a particular
module, just remove or comment it in your INSTALLED_APPS.
For example, if you just want to use the dashboard:

INSTALLED_APPS = (
 'admin_tools.dashboard',
 'django.contrib.auth',
 'django.contrib.sites',
 'django.contrib.admin'
 # ...other installed applications...
)

Setting up the database

To set up the tables that django-admin-tools uses you’ll need to type:

python manage.py syncdb

django-admin-tools supports South [http://south.aeracode.org], so if you
have South installed, make sure you run the following commands:

python manage.py migrate admin_tools.dashboard
python manage.py migrate admin_tools.menu

Adding django-admin-tools to your urls.py file

You’ll need to add django-admin-tools to your urls.py file:

urlpatterns = patterns('',
 url(r'^admin_tools/', include('admin_tools.urls')),
 #...other url patterns...
)

Available settings variables

	ADMIN_TOOLS_MENU

	The path to your custom menu class, for example
“yourproject.menu.CustomMenu”.

	ADMIN_TOOLS_INDEX_DASHBOARD

	The path to your custom index dashboard, for example
“yourproject.dashboard.CustomIndexDashboard”.

	ADMIN_TOOLS_APP_INDEX_DASHBOARD

	The path to your custom app index dashboard, for example
“yourproject.dashboard.CustomAppIndexDashboard”.

	ADMIN_TOOLS_THEMING_CSS

	The path to your theming css stylesheet, relative to your MEDIA_URL,
for example:

ADMIN_TOOLS_THEMING_CSS = 'css/theming.css'

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Customization of the django-admin-tools modules

Introduction

django-admin-tools is very easy to customize, you can override the
admin menu, the index dashboard and the app index dashboard.

	For this django-admin-tools provides two management commands:

	
	custommenu

	customdashboard

Customizing the navigation menu

To customize the admin menu, the first step is to do the following:

python manage.py custommenu

This will create a file named menu.py in your project directory.
If for some reason you want another file name, you can do:

python manage.py custommenu somefile.py

The created file contains a class that is a copy of the default menu,
it is named CustomMenu, you can rename it if you want but if you do
so, make sure you put the correct class name in your ADMIN_TOOLS_MENU
settings variable.

Note

You could have done the above by hand, without using the
custommenu management command, but it’s simpler with it.

Now you need to tell django-admin-tools to use your custom menu instead
of the default one, open your settings.py file and add the following:

ADMIN_TOOLS_MENU = 'yourproject.menu.CustomMenu'

Obviously, you need to change “yourproject” to the real project name,
if you have chosen a different file name or if you renamed the menu
class, you’ll also need to change the above string to reflect your
modifications.

At this point the menu displayed in the admin is your custom menu, now
you can read the menu and menu items API documentation
to learn how to create your custom menu.

Customizing the dashboards

To customize the index and app index dashboards, the first step is to do
the following:

python manage.py customdashboard

This will create a file named dashboard.py in your project directory.
If for some reason you want another file name, you can do:

python manage.py customdashboard somefile.py

	The created file contains two classes:

	
	The CustomIndexDashboard class that corresponds to the admin
index page dashboard;

	The CustomAppIndexDashboard class that corresponds to the
index page of each installed application.

You can rename theses classes if you want but if you do so, make sure
adjust the ADMIN_TOOLS_INDEX_DASHBOARD and
ADMIN_TOOLS_APP_INDEX_DASHBOARD settings variables to match your
class names.

Note

You could have done the above by hand, without using the
customdashboard management command, but it’s simpler with it.

Now you need to tell django-admin-tools to use your custom dashboard(s).
Open your settings.py file and add the following:

ADMIN_TOOLS_INDEX_DASHBOARD = 'yourproject.dashboard.CustomIndexDashboard'
ADMIN_TOOLS_APP_INDEX_DASHBOARD = 'yourproject.dashboard.CustomAppIndexDashboard'

If you only want a custom index dashboard, you would just need the first
line. Obviously, you need to change “yourproject” to the real project name,
if you have chosen a different file name or if you renamed the dashboard
classes, you’ll also need to change the above string to reflect your
modifications.

At this point the dashboards displayed in the index and the app index
should be your custom dashboards, now you can read
the dashboard and dashboard modules API documentation
to learn how to create your custom dashboard.

Customizing the theme

Warning

The theming support is still very basic, do not rely too much on it for
the moment.

This is very simple, just configure the ADMIN_TOOLS_THEMING_CSS to
point to your custom css file, for example:

ADMIN_TOOLS_THEMING_CSS = 'css/theming.css'

A good start is to copy the
admin_tools/media/admin_tools/css/theming.css to your custom file and
to modify it to suits your needs.

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Working with multiple admin sites

Introduction

Django supports custom admin sites, and of course you can have as many
admin sites as you want, django-admin-tools provides basic support for
this, you can setup a custom dashboard for each admin site.

Note

Multiple admin site support in django-admin-tools is, at the moment,
limited to dashboards. This means you cannot have different menus or
theming for each instance of admin sites. This will change in the near
near future though.

Setting up a different dashboard for each admin site instance

In the following example we will assume that you have two admin site
instances: the default django admin site and a custom admin site of your
own. In your urls, you should have something like this:

from django.conf.urls.defaults import *
from django.contrib import admin
from yourproject.admin import admin_site

admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls)),
 (r'^myadmin/', include(admin_site.urls)),
)

Now to configure your dashboards, you could do:

python manage.py customdashboard django_admin_dashboard.py
python manage.py customdashboard my_admin_dashboard.py

And to tell django-admin-tools to use your custom dashboards depending on
the admin site being used, you just have to add the following to your project
settings file:

ADMIN_TOOLS_INDEX_DASHBOARD = {
 'django.contrib.admin.site': 'yourproject.django_admin_dashboard.CustomIndexDashboard',
 'yourproject.admin.admin_site': 'yourproject.my_admin_dashboard.CustomIndexDashboard',
}

Note that the same applies for the ADMIN_TOOLS_APP_INDEX_DASHBOARD
settings variable.

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

The django-admin-tools menu and menu items API

This section describe the API of the django-admin-tools menu and menu items.
Make sure you read this before creating your custom menu.

The Menu class

The MenuItem class

The AppList class

The ModelList class

The Bookmarks class

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

The django-admin-tools dashboard and dashboard modules API

This section describe the API of the django-admin-tools dashboard and
dashboard modules.
Make sure you read this before creating your custom dashboard and
custom modules.

	..note::

	If your layout seems to be broken or you have problems with
included javascript files, you should try to reset your dashboard
preferences (assuming a MySQL backend):

python manage dbshell
mysql> truncate admin_tools_dashboard_preferences;

For more information see this issue [http://bitbucket.org/izi/django-admin-tools/issue/43/issues-with-dashboard-preferences-and/].

The Dashboard class

The AppIndexDashboard class

The DashboardModule class

The Group class

The LinkList class

The AppList class

The ModelList class

The RecentActions class

The Feed class

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Integration with third party applications

todo: write doc for “Integration with third party applications” section.

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Contributing to django-admin-tools

You are very welcome to contribute to the project! django-admin-tools is
hosted at Bitbucket [http://www.bitbucket.org/izi/django-admin-tools/],
which makes collaborating very easy.

There are various possibilities to get involved, for example you can:

	Report bugs [http://www.bitbucket.org/izi/django-admin-tools/issues/new/],
preferably with patches if you can

	Discuss new features ideas [http://groups.google.fr/group/django-admin-tools]

	fork the project [http://www.bitbucket.org/izi/django-admin-tools/fork/],
implement those features and send a pull request

	Enhance the documentation [http://www.bitbucket.org/izi/django-admin-tools/src/tip/docs/]

	Translate django-admin-tools [https://www.transifex.net/projects/p/django-admin-tools/c/admin_tools/]
in your language

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-admin-tools 0.5.2 documentation

Testing of django-admin-tools

This is information for developers of django-admin-tools itself.

Running tests

Run the runtests.sh script which is situated at the root dir of
django-admin-tools project.

Run all tests:

$./runtests.sh

Run only unit tests:

$./runtests.sh unit

Run only tests for specified app:

$./runtests.sh dashboard

Run only one test case:

$./runtests.sh dashboard.ManagementCommandTest

Run only one test:

$./runtests.sh dashboard.ManagementCommandTest.test_customdashboard

Code coverage report

Install the coverage.py library and the django-coverage app:

$ pip install coverage django-coverage

Then run tests and open test_proj/_coverage/index.html file in browser.

Where tests live

Unit tests should be put into appropriate module’s tests.py.
Functional/integration tests should be put somewhere into test_proj.

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-admin-tools 0.5.2 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 admin_tools	

 	
 	
 admin_tools.dashboard	

 	
 	
 admin_tools.dashboard.modules	

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-admin-tools 0.5.2 documentation

Index

 A

A

 	

 	admin_tools.dashboard (module)

 	

 	admin_tools.dashboard.modules (module)

 Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment.png

_static/comment-bright.png

_static/up.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/minus.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-admin-tools 0.5.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, David Jean Louis.
 Created using Sphinx 1.3.1.

_static/comment-close.png

_static/down.png

_static/file.png

